Как работает эхолот


Главная страница ✦ Эхолоты ✦ Как работает эхолот

В самых простых словах: электрический Sonar2импульс от передатчика преобразуется в звуковую волну в датчике(трансдьюсер) и передается в воду. Когда волна попадает на объект (рыбу, дно, дерево и т.д.) она отражается. Отраженная волна снова попадает в преобразователь, где она трансформируется в электрический сигнал, обрабатывается по заданному алгоритму, и посылается на дисплей. Так как скорость звука в воде постоянна (приблизительно 1440 метров в секунду), промежуток времени между отправкой сигнала и получением эха может быть измерен и по этим данным расстояние до объекта может быть определено. Этот процесс повторяется многократно в течение секунды. Наиболее часто используемая частота волны составляет 200 кГц, также иногда производятся приборы на частоте 83 кГц.


тя эти частоты находятся в диапазоне ближе к звуковым частотам, они неслышны ни людям, ни рыбе. Как упомянуто ранее, эхолот посылает и принимает сигналы, затем «печатает» эхо на дисплей. Так как это случается много раз в секунду, непрерывная линия идущая поперек дисплея, показывает рисунок дна. Кроме того, на экране отображается сигнал, возвращенный от любого объекта в воде между поверхностью и дном. Зная скорость звука в воде и время, которое требуется для возвращения эха, прибор может показывать глубину и нахождение любой рыбы в воде.

 

⛵ Возможности эхолота

 

Хороший эхолот обладает четырьмя важными характеристиками:

1) Мощный передатчик.

2) Эффективный преобразователь (датчик).

3) Чувствительный приемник.

4) Дисплей высокого разрешения. Power

Все части этой системы должны быть разработаны так, чтобы работать вместе, при любых погодных условиях и критических температурах. Высокая мощность передатчика увеличивает вероятность, что Вы получите эхо на глубоководье или в плохих водных условиях. Это также позволяет Вам видеть мелкие подробности, типа мальков и мелкой структуры дна. Преобразователь не должен только проводить мощный сигнал от передатчика, он также должен преобразовать электрический сигнал в звуковую энергию с наименьшей потерей в мощности сигнала.


другой стороны, он должен чувствовать самое малое эхо от малька или сигнал дна с глубоководья. Приемник имеет дело с чрезвычайно широким диапазоном сигналов. Он должен отличить максимально сильный передаваемый сигнал и слабое эхо, пришедшее от преобразователя. Кроме того, он должен различить объекты находящиеся близко друг к другу, превратив их в разные импульсы для дисплея. Дисплей должен иметь высокое разрешение (вертикальные пиксели) и хороший контраст, чтобы показывать подводный мир детально и четко. Это позволяет видеть мелкую рыбу и подробности дна.

 

🚤  Частота импульсов

Большинство современных Частотаэхолотов оперирует на частоте 200 кГц, некоторые используют 83 кГц. Есть свои преимущества у каждой частоты, но почти для всех состояний пресной воды и большинства состояний соленой воды, 200 кГц — лучший выбор. Эта частота дает лучшие подробности, работает лучше всего в неглубокой воде и на скорости, и обычно дает меньшее количество «шумовых» и нежелательных отражений. Определение близлежащих подводных объектов, также лучше на частоте 200 кГц. Это способность отобразить две рыбы как два отдельных эха вместо одной «капли» на экране.

Существуют некоторые условия, при которых частота 83 кГц лучше.


к правило, эхолоты, работающие на частоте 83 кГц (при тех же самых условиях и мощности) может проникать более глубоко через воду. Это происходит из-за естественной способности воды поглощать звуковые волны. Скорость поглощения больше для более высоких частот звука, чем для более низких частот. Поэтому 83 кГц эхолоты находят использование в более глубокой соленой воде. Также, преобразователи 83 кГц эхолотов имеют более широкие углы обзора, чем преобразователи 200 кГц эхолотов.

Пример: различие между 200 кГц и 83 кГц:

200 kHz 83 kHz
Малые глубины Большие глубины
Узкий конический угол Широкий конический угол
Лучшее определение и разделение целей Худшее определение и разделение целей
Меньшая чувствительность к помехам Большая чувствительность к помехам

 

🐠  Как формируется дуга рыбы


Причина, по которой рыба отображается, как дуга на экране эхолота заключается в относительном движении между рыбой и Дугаконическим углом преобразователя при проходе лодки над рыбой. Длина дуги на экране, от одного ее конца до другого — не имеет к размеру рыбы никакого отношения, а всего лишь обозначает время нахождения рыбы в конусе излучаемого акустического сигнала. Как только ведущая кромка конуса попадает на рыбу, пиксель отображается на экране эхолота. Поскольку лодка движется над рыбой, расстояние до нее уменьшается. Это ведет к тому, что каждый следующий пиксель отображается на экране выше предыдущего. Когда центр конуса находится непосредственно над рыбой, первая половина дуги сформирована. Это место — кратчайшее расстояние до рыбы. Так как рыба ближе к лодке, сигнал более сильный, и эта часть дуги самая толстая. Когда лодка уходит от рыбы, расстояние увеличивается и пиксели появляются более глубоко, пока рыба не уйдет из конуса. Если рыба не проходит непосредственно через центр конуса, дуга не будет отображена. Так как рыба находится в конусе не очень долго, не так много пикселей отображают ее на экране, а те что есть, более слабые. Это одна из причин, по которые трудно показать дуги рыбы у поверхности воды. Конический угол слишком узкий для получения дуги.

Это интересно: Рыбы создают одни из наиболее интересных и удивительных эхо-сигналов, какие только бывают.


наверняка слышали, что от плавательного пузыря в теле рыбы отражается эхо-сигнал, который в виде метки виден на экране эхолота. Это, правда, поскольку так и есть, но многие виды рыб не имеют плавательного пузыря, и, тем не менее, они также видны на экране эхолота! Как и мы, рыбы в основном состоят из воды, так что от эха было бы мало пользы. Но на теле рыбы есть чешуя, скелет и другие части тела, плотность которых больше плотности воды. Хотя от плавательного пузыря звуковой импульс отражается, наверное, лучше всего, но другие части тела рыбы также вполне способны стать причиной эхо-сигнала.

Помните, необходимо движение между лодкой и рыбой, чтобы была видна дуга. Для этого необходимо двигаться на медленной скорости. Если Вы остановились, то рыбы не будут отображаться арками. Вместо этого они будут видны как горизонтальные строки, поскольку они плавают внутри конуса преобразователя.

 

Исследование состояния воды и дна

Под этими словами подразумевается получение Мягкое дноданных об особенностях состояния воды и плотности дна, а Жесткое днотакже получение данных о температуре воды.


я определения температуры используются специальные датчики, которые могут поставляться отдельно, а могут быть совмещены с преобразователем, то есть основным датчиком эхолота. К большинству эхолотов подключается датчик измерения скорости. Обычно он используется для измерения скорости лодки относительно воды, для определения оптимальной скорости для рыбалки, допустим, при ловле на «дорожку». Также для рыбаков полезными будут данные о скорости течения воды при стоянке на якоре. Анализируя полученные данные о скорости движения лодки, можно получить информацию о пройденном пути. При детальном анализе информации, полученной при помощи эхолота, можно определить, где находится термоклин — слой воды с низким содержанием кислорода, который образуется в стоячей воде при высоких температурах.

 

Каким образом определяется плотность и структура дна?

Это вторая, пожалуй, самая важная функция эхолота, позволяющая получать изображение контура дна — бровки, бугры и прочие изменения рельефа, представляющие интерес при поиске рыбы. Одной из ошибок рыболовов является представление, что на экране эхолота изображён тот участок, что охвачен лучом в момент времени, когда мы смотрим на экран. Но «картинка» на экране это всего лишь развёрнутая во времени история прохождения луча и её вполне можно сравнить с изображением луча на экране осциллографа — луч эхолота отражает на дисплее события во временном масштабе.


м позже произошло событие, тем его изображение ближе к левому краю дисплея. Понятно, что событием в данном случае мы называем фрагмент изображения. Ряд событий и есть «картинка» на экране — прорисовка линии дна, объектов в воде, изображение изменения плотности воды (термоклин) и т.д. Сигнал луча эхолота по-разному отражается с разных видов донной поверхности. Например, сигнал, отраженный от илистого дна будет более рассеянный, нежели аналогичный сигнал, отраженный от жесткой поверхности. Поэтому илистое дно будет выглядеть на экране эхолота размытым и нечетким. А если дно жесткое, то на дисплее оно будет отображено насыщенным темным цветом без размытых краев.

⚓ Изображение объектов в воде, поиск рыбы.

Как бы парадоксально это ни звучало, но отображение символов рыбы на экране — это, скорее, Изображение на дисплеевторостепенная функция эхолота. Человек, увлекающийся рыбной ловлей, без проблем проанализирует данные эхолота, такие, как температура воды, глубина и структура дна, и на основе этих данных сделает вывод о возможном наличии рыбы на том или ином участке водоема. Когда на экране появляется графический символ рыбы или дуга, это значит, что луч эхолота несколько секунд назад прошел над местом, где он обнаружил объект, распознанный им, как рыба.


и этом для того, чтобы эхолот просигнализировал о возможном наличии рыбы необходимо, чтобы она попала в центр луча. Мы уже говорили о том, что изображение экрана — это отображение происходящего под водой с учетом временной проекции. Аналогичная ситуация происходит во время обнаружения рыбы. Наиболее четкое изображение рыбы появляется на экране, когда рыба находится в центре луча. При этом не будем забывать, что и лодка, и рыба не стоят на месте, а движутся относительно друг друга. Если лодка идет на большой скорости на мелководье, а луч эхолота узкий, то шанс того, что эхолот зафиксирует появление рыбы в луче, крайне невелик. Да и к тому же, вряд ли рыба будет и дальше оставаться на месте, заметив лодку. На большой скорости также возможно появление на экране эхолота непрерывной черты, что говорит о том, что эхолот не успевает обрабатывать данные, полученные на такой скорости. Для того, На дисплеечтобы информация о наличии рыбы, которая отображается на экране и реальность максимально совпадали, необходимо настроить чувствительность эхолота и скорость прокрутки экрана. Оптимальные значения для этих параметров устанавливаются исключительно опытным путем. Также желательно установить режим увеличения исследуемого участка (ZOOM). В этом случае информация на экране будет наиболее приближенной к действительности.

гда все параметры эхолота выставлены верно, мы увидим на дисплее дугу или символ рыбы. Значит ли это, что под лодкой действительно находится рыба? С вероятностью 80%- да. Однако бывает и так, что символом рыбы отображается проплывающая под водой коряга или иной предмет, очертаниями похожий на рыбу. Как в этом случае определить, действительно ли в поле луча эхолота попала рыба, а не посторонний предмет? Эхолот дает нам пищу для размышлений, а выводы мы делаем сами, основываясь на знаниях о повадках рыб и местах их обитания. Например, дуга возле донной коряги на глубине может оказаться судаком, а появление большого пятна на экране в углублении на фоне ровного дна, с большой вероятностью можно назвать стаей «бели» — некрупной густеры или плотвы. Конечно, однозначных выводов в любом случае делать не стоит, но места предположительного обнаружения рыбы в любом случае можно считать перспективными для ловли. То есть, рыбалка с эхолотом состоит из следующих важных факторов: анализ рельефа дна или наличие привлекательных для рыбы объектов на дне, и наличие символов рыбы на экране. И если одиночные экземпляры рыбы могут иногда отображаться некорректно, то обнаружение стаи крупных рыб практически всегда протекает без осложнений.

🐳  Виды эхолотов.

В основном все эхолоты делятся на однолучевые и многолучевые. Невозможно сказать однозначно, что лучше — один луч или несколькоТипы эхолотов.


о все определяется индивидуальными запросами рыбака и особенностей ловли. Как уже было сказано выше, один неширокий луч дает четкое отображение структуры дна и подводных объектов, но при этом имеет не очень широкий угол обзора. Дополнительные же лучи эхолота не дает настолько четкого и детального изображения, но при этом позволяют наблюдать за объектами, которые находятся в верхнем и среднем слое воды. Например трехлучевой эхолот 200/455 кГц, формирует три луча, с общим углом покрытия 90 градусов: 20° центральный (200 кГц) и два боковых по 35° (455 кГц). Лучи эхолота выстроены в ряд — центральный луч отображает дно, боковые повышают обзорные свойства эхолота, что позволяет рыболову наиболее четко видеть, с какой стороны от лодки находится рыба. Данная система позволит получить наиболее подробную информацию о происходящем под водой, поскольку узкий луч (20°) проникает глубоко в воду, в то время как широкие лучи (35°) охватывают обширную площадь под лодкой.

Отдельная категория многолучевых Многолучевые эхолотыэхолотов — это шестилучевые модели, которые позволяют генерировать трехмерную проекцию изображения. Однако такие эхолоты часто искажают полученную информацию, и потому требуют хороших технических навыков при настройке перед использованием. Самой популярной моделью является Humminbird Matrix 47 3D.

Технологии обработки и изображения эхо-сигнала.

Принцип работы эхолота заключается в том, что прибор обрабатывает и автоматически управляет такими параметрами, как скорость обновления, чувствительность, синхронизация работы передатчика и приемника. При этом условия эхолокации постоянно изменяются. Некоторые эхолоты позволяют вручную менять основные настройки. Это очень удобно для тех, кто предпочитает от начала до конца участвовать в процессе рыбаки и непосредственно эхолокации.

🚤  Как ведет себя эхолот на скорости.

Прежде всего надо отметить, что эхолот не предназначен для обнаружения рыбы на больших скоростях ! Поэтому на скорости большей, чем 60 км/час дуги рыб и изображения рельефа будут отображаться крайне некорректно. На такой скорости можно получать общую информацию о структуре дна. Что мешает корректной обработке сигнала на высокой скорости? В первую очередь это кавитация, то есть создание пузырьков воздуха вследствие турбулентности водяного потока при работе двигателя. В ряде случаев избежать пагубного воздействия кавитации помогает установка датчика не на транец, а на специальный держатель, который опускает датчик на большую глубину, чем, нежели он находился бы на транце.

Использование эхолота на зимней рыбалке.

Ряд эхолотов имеет возможность подключения дополнительного датчика, который может «просматривать» дно сквозь лед. Однако Зимний эхолотздесь есть свои подводные камни. Не всегда можно использовать датчик, который «бьет» через лед. Точнее, его можно использовать только в одном случае: если это первый лед и в нем нет пузырьков воздуха. Любое наличие воздуха в толще льда повлечет за собой искажение изображения. Как мы уже выяснили, для того, чтобы эхолот отображал сведения о глубине и структуре дна, необходимо, чтобы датчик находился в движении. Опуская датчик в лунку, мы ограничиваем его движение и, следовательно, теряем возможность видеть детали структуры дна. Обычные эхолоты для зимней рыбалки, не очень подходят, т.к. есть один недостаток — при изучении дна неподвижно, с помощью такого аппарата, дно как бы «плывет». Для зимней рыбалки, лучше использовать эхолот-флешер. Его главное достоинство — статичность дна. Флешеры способны в режиме реального времени практически мгновенно отображать все, что происходит под лункой. При этом есть возможность одновременного отображения рыбы и приманки. Встроенным флешером обладают модели Humminbird от 596 и выше.

Что может отобразить эхолот на зимней рыбалке?

Во- первых, данные о составе дна. Во- вторых, данные о температуре воды. И, в третьих, мы можем получить данные о возможном местонахождении рыбы. Хоть датчик эхолота и находится в неподвижном положении, но рыба так или иначе находится в движении, поэтому на зимней рыбалке мы так же будем видеть отображение дуг и символов рыбы на экране эхолота. Для того, чтобы улучшить качество изображения на экране эхолота во время зимней рыбалки, необходимо установить низкую скорость обновления экрана, тогда объект, находящийся в воде в движении, будет виден гораздо четче. При этом в случае, если на экране появляется сплошная темная полоса, это может значить, что под водой довольная плотная стая рыб.

 

На что стоит обратить внимание при выборе зимнего эхолота:

  1. Время автономной работы (в холоде, емкость аккумулятора падает)
  2. Простота настроек
  3. Тип экрана
  4. Габариты
  5. Вес

Эхолоты Smartcast

Современные эхолоты позволяют исследовать дно и подводные объекты с берега,Smartcast используя беспроводные датчики. Это удобно для тех, кто, помимо рыбалки с лодки, любит рыбачить с берега. Такие эхолоты очень компактные и могут устанавливаться на удочку, или в виде наручных часов. Например уникальная модель Smartcast RF35е — беспроводной рыбопоисковой эхолот, выполненный в виде наручных часов. Датчик можно использовать стационарно или в движении, при этом на дисплее будет отображаться изображение Smartcastтой зоны, над которой проплывает датчик. Эхолоты Smartcast RF35е идеально подходят для изучения дна на большом расстоянии и для ловли рыбы с берега. Прибор выдает сигнал обнаружения рыбы, а максимальная глубина обнаружения составляет 35 м. Датчик работает от замыкания двух контактов, что продлевает срок службы батареи.

Эти модели нельзя использовать как зимние эхолоты, так как они выходят из строя при температуре ниже нуля !

Практические выводы: Эхолот с большим углом обзора и низкой частотой излучения дает возможность быстро прочесать большие пространства. Это полезно при обследовании совершенно незнакомого места. Эхолот с высокой частотой излучения и малым углом обзора дает более точную информацию о происходящем под лодкой и в ближайших окрестностях. Так легче искать конкретную яму, бровку или банку. Чем ближе к поверхности эхолот показывает рыбу, тем ближе к курсу движения Вашей лодки эта рыба находится. Однолучевой эхолот на рыбалке — тоже хороший помощник, не обязательно гнаться за количеством лучей.

Как работает эхолот

Источник: SonarMaster.ru

Люди занимаются рыболовством уже тысячи лет. Перед всеми, кто удит рыбу, стоит одна и та же задача – найти рыбу и сделать так, чтобы она клюнула на наживку. Эхолот, конечно, рыбу за вас не поймает, зато поможет ее найти.

Принцип действия

Эхолот по-английски «sonar». Этот термин является сокращением от словосочетания «SOund» (звук), «NAvigation» (навигация) and Ranging (определение расстояния)». Эхолоты были созданы как средство слежения за субмаринами во время Второй мировой войны. Эхолот состоит из передатчика, преобразователя, приемника и экрана.
Вкратце работу эхолота можно описать так. Электрический импульс от передатчика преобразуется преобразователем в звуковую волну и посылается в воду. Если эта волна ударяется о какой-то предмет, она отражается. Эхо попадает в преобразователь, который преобразует его обратно в электрический сигнал, усиливаемый приемником и подаваемый на экран. Поскольку скорость звука в воде является величиной постоянной (около 1,575 км/сек), то, замерив промежуток времени между передачей сигнала и получением эхо, можно вычислить расстояние до предмета. Этот процесс повторяется много раз в секунду.
 

 

Наиболее часто в эхолотах используется частота 192-200 кГц, однако в некоторых моделях применяется частота 50 кГц. Хотя эти частоты находятся в пределах звукового спектра, ни человек, ни рыба их не ощущают (поэтому не волнуйтесь, что эхолот вспугнет вам рыбу – она его просто не услышит).

Как сказано выше, эхолот посылает и принимает сигналы, затем «отражает» эхо на экране. Поскольку это происходит много раз в секунду, на экране эхо представляется в виде непрерывной линии, отображающей сигнал, поступающий со дна. Помимо него, на экране отображаются эхосигналы от всех встретившихся ну пути объектов между поверхностью воды и дном. Зная скорость прохождения звука в воде (около 1,575 км/сек) и время, требующееся для приема эхо, прибор может вычислить глубину воды и определить наличие в ней рыбы.

Работа системы в целом

Высококачественный эхолот состоит из четырех базовых компонентов:
• мощного передатчика;
• эффективного преобразователя;
• чувствительного приемника;
• экрана с высоким разрешением и контрастностью.

Все части системы должны быть сконструированы в расчете на совместную эксплуатацию при любых погодных условиях и экстремальных температурах.
Высокая мощность передатчика увеличивает вероятность того, что вы получите ответное эхо в глубокой воде и при плохой погоде. Она позволит вам различить мелкие детали, например, мелкую рыбешку и подводные предметы.

Преобразователь должен не только справляться с высокой нагрузкой от передатчика, но и преобразовывать электрическую энергию в звуковую с минимальными потерями в силе сигнала. С другой стороны, преобразователь обязан «слышать» слабейшие эхо, отражающиеся от глубин и мельчайшей рыбешки.

Приемнику также приходится иметь дело с очень широким диапазоном сигналов. Он ослабляет слишком сильный сигнал от передатчика и усиливает слабые сигналы, поступающие от преобразователя. Кроме того, он различает оказывающиеся слишком близко к друг другу объекты и показывает их в виде индивидуальных импульсов на экране.
Экран должен иметь высокое разрешение (вертикальные пиксели) и высокую контрастность, чтобы картинка на нем была четкой и детальной (например, чтобы можно было различать дугообразные сигналы от рыб и разные мелкие объекты).

Частота

В большинстве эхолотов в настоящее время используется частота 192-200кГц, и лишь некоторые работают на частоте 50 кГц.
У каждой из этих частот есть свои преимущества, однако почти во всех случаях в пресной воде и в большинстве случаев в соленой воде используют диапазон от 192 до 200 кГц. Он обеспечивает наивысшую детальность, лучше всего работает в мелководье и когда судно на ходу, дает меньше шумов и лишних эхо. Кроме того, на более высоких частотах выше разрешение объекта. Например, две плывущие рядом рыбины будут отображены на экране как два отдельных объекта, а не как одно сплошное «пятно».

В некоторых случаях оптимальной является частота 50 кГц. Как правило, эхолот с рабочей частотой 50 кГц (при равных условиях и мощности) способен проникать на бóльшие глубины, нежели эхолоты, работающие на более высоких частотах. Это связано с естественной способностью воды поглощать звуковые волны. Звуки более высокой частоты поглощаются быстрее, чем звуки более низкой частоты. Поэтому в более глубоких водах обычно применяются преобразователи 50 кГц. Кроме того, у преобразователей, работающих на 50 кГц, как правило, шире угол охвата, чем у их «коллег», работающих на 192 и 200 кГц. Благодаря этой особенности их удобно применять для слежения за составными даунриггерами, даже на относительном мелководье, поэтому многие рыбаки предпочитают частоту 50 кГц.

Предлагаем вашему вниманию сводную таблицу различий между эхолотами, работающими на указанных выше частотах:

192 и 200 кГц
• меньшие глубины
• узкий угол излучения
• лучше разрешение и различение цели
• меньшая восприимчивость к шумам

50 кГц
• бóльшие глубины
• широкий угол излучения
• хуже разрешение и различение цели
• более высокая восприимчивость к шумам

Преобразователи

Преобразователь выполняет функцию антенны эхолота. Он преобразует электроэнергию от передатчика в звуковой сигнал высокой частоты. Звуковая волна от преобразователя проходит сквозь воду и отражается от находящегося в воде объекта. Когда до преобразователя докатывается ответное эхо, он преобразует звук обратно в электрический сигнал, который посылается на приемник эхолота. Частота преобразователя должна совпадать с частотой эхолота. Другими словами, нельзя использовать преобразователь 50 кГц и даже 200 кГц вместе с эхолотом, рассчитанным на 192 кГц. Преобразователь должен выдерживать мощные импульсы передатчика, преобразовывая как можно большую часть импульса в звуковую энергию. В то же время, он должен быть достаточно чувствительным, чтобы принимать тишайшие эхо. Все это должно происходить на нужной частоте, а эхо на других частотах должны отбрасываться. В общем, преобразователь должен быть очень умелым.

Кристалл

В качестве активного элемента в преобразователе используется искусственный кристал (цирконат свинца или титанат бария). В процессе изготовления химические вещества смешивают и заливают в формы, которые ставят в печь, где химические компоненты превращаются в отвердевшие кристаллы. После охлаждения на обе стороны кристалла наносится проводящее покрытие. К нему привариваются проводки, чтобы кристаллы можно было подсоединить к кабелю преобразователя. От формы кристалла зависит и его частота, и угол его излучения. У круглых кристаллов (используемых в большинстве эхолотов) частота зависит от толщины кристалла, а от его диаметра зависит угол излучения или угол охвата (см. раздел, «Углы излучения»). Например, при частоте 192 кГц кристалл с углом излучения 20° имеет диаметр примерно 2,5см, в то время как для излучения 8° требуется кристалл диаметром приблизительно 5,1см. Все логично. Чем больше диаметр кристалла, тем меньше угол излучения. Именно поэтому преобразователь с углом излучения 20° намного меньше преобразователя с углом излучения 8°, при одинаковой рабочей частоте.

Корпус

Корпуса преобразователей бывают любых форм и размеров. Большинство из них изготавливаются из пластика, однако некоторые из преобразователей, рассчитанных на монтаж в корпус судна, изготавливаются из бронзы. Как мы уже говорили, размер кристалла определяет частоту и угол излучения. В свою очередь, размеры корпуса преобразователя зависят от размеров расположенного в нем кристалла.
В настоящее время существует четыре основных типа корпуса преобразователя. Это [1] сквозные корпуса (монтируются сквозь корпус судна), [2] корпуса, прикрепляемые к внутренней стенке корпуса судна, [3] переносные и [4] монтируемые на транце.

Преобразователи со сквозным корпусом вставляются в отверстие, просверленное в корпусе судна. Как правило, они снабжены длинным штоком, который пропускают сквозь корпус и закрепляют гайкой соответствующего размера. У плоскодонок монтаж этим и ограничивается. Для вертикальной установки преобразователя по борту судна, имеющего корпус V-образной формы, понадобится деревянный или пластмассовый обтекатель. Сквозные преобразователи обычно устанавливают на судах со стационарным двигателем, впереди рулей, гребных винтов и валов.

Преобразователи с корпусами второго типа приклеиваются эпоксидной смолой непосредственно к внутренней стенке стекловолоконного корпуса судна. Звук передается и принимается сквозь корпус судна, при этом работа эхолота становится менее эффективной (глубина действия эхолота будет ниже, чем у эхолота, установленного на транце). Корпус судна должен быть выполнен из твердого стекловолокна. Даже не пытайтесь «пробить» лучами эхолота корпус из алюминия, дерева или стали. Звук не проходит сквозь воздух, поэтому если корпус судна изнутри укреплен конструкцией из дерева, металла или пенопласта, перед установкой эхолота ее придется демонтировать. Еще один недостаток эхолота данного типа заключается в том, что его нельзя оптимально настроить на дугообразные сигналы рыб. Впрочем, наряду с недостатками есть и существенные преимущества. Во-первых, его не поломает корягой или камнем, т.к. он расположен внутри судна. Во-вторых, он, не выступая из корпуса судна и не препятствуя течению, и будучи установлен там, где поток воды плавно обтекает корпус, довольно хорошо, как правило, работает при больших скоростях хода судна. В третьих, он не обрастет.

Переносные преобразователи, как видно из их названия, крепятся к корпусу судна временно. Обычно их крепят при помощи одной или несколько присосок. Некоторые переносные преобразователи могут крепиться и к электродвигателю для троллинга.
Транцевые преобразователи крепятся на транце судна и находятся в воде, немного ниже днища судна. Среди перечисленных выше четырех типов транцевые преобразователи по популярности лидируют с большим отрывом. Транцевый преобразователь с тщательно продуманной конструкцией будет работать на любом судне (кроме судов со стационарным двигателем), в том числе при высокой скорости хода судна.

Эксплуатация преобразователя на скорости

Годы назад, когда эхолоты для спортивного рыболовства только появились, бóльшая часть рыбачьих судов представляла собой мелкие лодки с подвесными моторами. По-настоящему мощный подвесной мотор развивал 50 л.с., при этом уже тогда большинство эхолотов были переносными, и их было несложно переставлять с лодки на лодку. Это преимущество считалось важнее способности работать на высокой скорости. Тем не менее, по мере совершенствования лодок, все больше людей хотели иметь на борту стационарный эхолот, способный действовать на скоростях, развиваемых лодкой. В связи с этим началась работа над созданием преобразователя, нормально функционирующего независимо от скорости судна.

 

 

 

 

Серьезным препятствием для работы эхолота на высоких скоростях является кавитация. Если поток воды вокруг преобразователя равномерен, преобразователь без проблем посылает и принимает сигналы. Если же поток воды «вздыбливается» под воздействием непогоды или кромок судна, он становится турбулентным настолько, что воздух отделяется от воды в виде пузырьков. Это явление называется кавитацией. Если над преобразователем (в котором расположен кристалл) проносятся пузырьки воздуха, на экране эхолота отображается «шум». Дело в том, что эхолот предназначен для работы в воде, а не в воздухе. Если же над преобразователем проносятся пузырьки воздуха, сигнал преобразователя отражается от пузырьков обратно на преобразователь. Поскольку воздух граничит с преобразователем, эти отражения очень сильны. Они создают помеху более сильным сигналам, отражающимся от дна, подводных объектов, рыб, из-за чего их становится трудно или невозможно различить.

Для решения данной проблемы преобразователю нужен корпус, который вода бы обтекала, не создавая турбулентности. Это достаточно сложно из-за множества требований, предъявляемых к современному преобразователю. Он должен быть компактным, чтобы не мешать подвесному мотору и не препятствовать потоку воды за ним. Он должен быть прост в установке на транце, чтобы при монтаже можно было обойтись минимумом отверстий. Он должен «уметь» откидываться, чтобы избегать повреждений при столкновении с какими-либо предметами.

Проблема кавитации не ограничивается формой преобразователя. Корпуса многих судов сами способствуют образованию пузырьков воздуха, которые создают завесу над лицевой частью установленного на транце преобразователя. Эта проблема особенно актуальна для алюминиевых лодок, из-за сотен выступающих из корпуса заклепок, каждая из которых образует свой собственный поток пузырьков, особенно при движении лодки на высокой скорости. Во избежание этой проблемы нужно установить лицевую часть преобразователь таким образом, чтобы поток пузырьков воздуха проходил над ней. Иными словами, кронштейн преобразователя необходимо установить как можно ниже по транцу.

Углы излучения преобразователя

Преобразователь фокусирует звук в луч. Чем дальше вглубь идет звуковой импульс, испускаемый излучателем, тем шире его охват. Если бы вы изобразили его на листе миллиметровки, вы бы увидели, что он образует конус, поэтому угол излучения еще называют углом конуса. Звуковой сигнал наиболее силен вдоль центровой линии (оси) конуса, постепенно ослабевая по мере удаления от центра.
Чтобы измерить угол излучения преобразователя, мощность излучения замеряют в центре или на оси конуса, затем сравнивают с мощностью по мере удаления от центра. Когда мощность падает наполовину (-3 дБ), измеряют угол относительно оси. Угол в диапазоне от –3дБ с одной стороны оси до –3 дБ с другой стороны оси называют углом излучения (конуса).

 

 

 

 

 

 

 

Отметка половинной мощности –3 дБ считается стандартной в электронной промышленности, и большинство производителей измеряют угол излучения именно таким образом, хотя некоторые берут за основу отметку –10 дБ, где мощность излучения составляет 1/10 от мощности, имеющей место на оси. Угол получается более широким, поскольку замер производится в точке, расположенной гораздо дальше от оси. Эффективность работы преобразователя остается прежней, немного отличается лишь метод измерения. К примеру, на отметке – 3 дБ угол излучения преобразователя составляет 8°, а на отметке –10 дБ он составляет 16°.

Устройства с более широким лучом помогут вам увидеть более широкую картину подводного мира, но за счет уменьшения глубины проникновения луча, поскольку мощность передатчика направляется вширь, а не вглубь. Узкоугольный преобразователь не даст вам такого полного представления о том, что творится вокруг, как широкоугольный, однако позволит вам заглянуть значительно глубже. Дело в том, что узконаправленный преобразователь концентрирует мощь передатчика на меньшем участке. У эхолота с широкоугольным преобразователем сигнал, отражающийся от дна, на экране шире, чем у эхолота с узкоугольным преобразователем, поскольку вы наблюдаете более широкий участок дна. Зона охвата широкого угла излучения намного больше, чем зона охвата узкого угла излучения.

Высокочастотные преобразователи (192 кГц) бывают как узкоугольными, так и широкоугольными. В пресной воде, как правило, используются «широкоугольники», тогда как для соленой воды подходят только узкоугольные эхолоты. У низкочастотных эхолотов (50 кГц) широта угла излучения варьируется от 30 до 45 градусов. Хотя преобразователь наиболее чувствителен в пределах собственного угла излучения, до вас будут доходить и некоторые эхосигналы из-за этих пределов, правда, не такие сильные.

Состояние воды и дна

От типа воды, в которой эксплуатируется эхолот, в немалой степени зависит его эффективность. Звуковые волны легко перемещаются в прозрачной пресной воде, и в большинстве озер так и происходит.
В соленой воде звук поглощается и отражается взвешенными веществами. Наиболее восприимчивыми к рассеиванию звуковых волн оказываются более высокие частоты, которые не в состоянии проходить сквозь соленую воду так же хорошо, как более низкие. Отчасти, проблема эксплуатации в соленой воде состоит в том, что это крайне динамичная среда (фактически, мировой океан). Ветер и течения постоянно перемешивают в ней воду. Под действием волн в воде образуются и перемешиваются пузырьки воздуха, рассеивающие сигнал эхолота. Микроорганизмы, типа водорослей и планктона, рассеивают и поглощают сигнал эхолота. То же самое делают и находящиеся в воде минеральные вещества и соли. На пресную воду тоже воздействуют ветры, течения и живущие в ней микроорганизмы, но все таки меньше, чем на соленую.

Ил, песок, растительность на дне поглощают и рассеивают сигнал эхолота, ослабляя ответное эхо. Камень, сланец, кораллы и другие твердые предметы хорошо отражают сигнал эхолота. Вы увидите разницу, взглянув на экран. Мягкое, илистое дно отображается на нем в виде тонкой линии, а твердое, каменистое дно отображается в виде широкой полосы.
Работу эхолота можно сравнить с поведением света от фонаря в темной комнате. Когда свет перемещается по комнате, он хорошо отражается от белых стен и ярких твердых предметов, однако если направить фонарь в покрытый темным ковром пол, отражение будет слабее, поскольку ковер поглощает свет, а шероховатая текстура рассеивает его, из-за чего к вам возвращается меньше света.

Температура воды и термоклины

Температура воды оказывает существенное влияние на жизнедеятельность рыб. Рыба хладнокровна, и температура ее тела всегда совпадает с температурой окружающей ее воды. Зимой в холодной воде обмен веществ рыбы замедляется. В этот период ей требуется примерно в четыре раза меньше пищи, чем летом. Большинство рыб не мечут икру, если температура воды не находится в каком-то довольно узком диапазоне. Встроенные во многие наши эхолоты датчики температуры поверхности воды помогают определить температуры верхних слоев воды, являющиеся наиболее благоприятными для метания икры различными породами рыб. К примеру, форель погибает в реках, вода в которых становится слишком теплой. Окунь и другие породы рыб в конце концов погибают, если скапливаются в озерах, вода в которых летом недостаточно прогревается. И хотя некоторые рыбы восприимчивы к перепаду температур меньше, чем другие, у каждой породы есть свой определенный температурный диапазон, в границах которого она пытается оставаться. Собирающуюся у поверхности воды рыбу на глубоких участках привлекает именно благоприятная для них температура. Мы полагаем, что там она чувствует себя наиболее комфортно.

В озерах температура в пространстве между поверхностью и дном редко бывает одинаковой. Как правило, за более теплым слоем воды следует более холодный. Граница между двумя слоями называется термоклином. Глубина и толщина термоклина могут меняться в зависимости от времени года и времени суток. В глубоких озерах может иметься два термоклина и более. Это существенно, поскольку многим породам промысловой рыбы нравится располагаться прямо в нем либо немного выше или ниже него. Часто мелкая рыбешка оказывается над термоклином, а более крупная промысловая рыба покоится в нем или чуть ниже. К счастью, на экране эхолота эта разница в температурах отражена. Чем значительнее разность температур, тем четче на экране виден термоклин.

Дугообразные сигналы рыб

Один из вопросов, которые нам задают наиболее часто, звучит так: «Как сделать так, чтобы на экране отображались дуги рыб?» Добиться этого совсем не сложно, требуется лишь некоторое внимание к нюансам, причем не только при настройке эхолота, но и при его монтаже.

Разрешение экрана

Количество вертикальных пикселей, на которые выводится изображение, называется разрешением экрана. Чем больше вертикальных пикселей на экране эхолота, тем четче он будет отображать дугообразные сигналы рыб. В приведенной ниже таблице для двух экранов указаны размеры пикселей и отображаемые ими участки в диапазоне дальности от 0 до 50 футов.

 

 

 

 

 

 

2 октября 2007 г.

Источник: ivan-susanin.ru

На практике все проще

Должен Вас обрадовать. На воде все будет гораздо проще, чем написано в статье или, если объяснять словами «на пальцах», или показывать в деморежиме. Многие, казалось бы, непростые вопросы отпадут сами собой, как только вы включите его и начнете двигаться по водоему. Далее стоит заметить, что обучение, как я уже говорил, даже лучше проводить не от теории к практике, как рекомендуется классиками теории методики преподавания, а наоборот. То есть, вначале мы берем и «слепо» тестируем, руководствуясь скорее интуицией, чем знаниями. Затем у нас появляются конкретные вопросы, дальше в источниках или при беседе со специалистами мы ищем на них ответы. Снова практика, снова вопросы и снова ищем ответы. Поэтому, даже лучше, если Вы уже какое-то время попрактиковались с эхолотом и теперь разбираетесь, читая эту статью.

Если что-то не понятно особо не расстраиваетесь, уверяю Вас, со временем после определенной практики это будет элементарно просто и понятно. Просто пропускайте глазами, читая дальше, и перечитайте это же где то через 10-15 рыбалок.

Но для начала все-таки стоит понять основы.

Принцип работы эхолота — максимально коротко

Важный вопрос, рекомендую напрячься и вникнуть. Это поможет в дальнейшем успешней понимать его изображения. Тем более все очень просто: как дважды два.

Итак, датчик излучателя посылает звуковые щелчки (импульсы) в сторону дна.

Принцип работы эхолота

Импульс на своем пути встречает разные предметы и наконец, достигает дна и отражается обратно наверх к датчику излучателю, который теперь его принимает обратно. По пути ко дну и обратно импульс собрал разную информацию: количество, размеры и плотность предметов в толще воды и наконец, самого дна. Голова, точнее ее процессор,  обрабатывает собранную им информацию и выводит на дисплей в виде движущейся, графической картинки. Что-то на подобии кардиограммы сердца.

И здесь следует учитывать один очень важный момент: не зависимо от скорости движения вашего плавсредства, от полной остановки до максимальной скорости, экран эхолота будет прокручивать картинку с одной и той же запрограммированной скоростью. И у пользователя возникает справедливый вопрос: «Мы же стоим на месте, а картинка движется! Как так?» Причем, если под лодкой в конусе луча рыба или снасть, то на экране пойдет длинная полоса, и у начинающего пользователя создастся впечатление, что это что-то огромное. На самом деле импульс многократно отскакивает от одного и того же предмета, а экран вынужден его постоянно показывать.

А теперь предположим, что по тому же предмету мы пройдем на скорости 5 км/ч импульс отразится от нашего предмета (рыба, коряга, трава, сетка) всего лишь несколько десятков раз. И на экране появится, скорее всего, так называемая дуга или пятно определенного размера. А если мы пройдем потом уже предмету со скоростью 20 — 50 км/ч, то луч успеет ударить по предмету всего пару раз. И он изобразится совсем маленькой и короткой дужкой. А может и вовсе не успеет отобразиться, если предмет небольшой, а скорость высокая. Причем, во всех трех случаях экран будет прокручиваться с единой скоростью.

Прохождение по косяку рыбы с очень малой скоростью 1-3км/ч
Прохождение по косяку рыбы с очень малой скоростью 1-3км/ч. После «наезда» на рыбу лодка
затормозила, и правый край косяка еще сильнее растянулся.

Прохождение по косяку рыбы на нормальной скорости 5-7 км/ч
А это та же рыба просканированная на нормальной скорости 5-7 км/ч. Полосы (рыбы) стали короче
и в целом меньше по размеру.

Общий вывод таков: если на практике не получилось пройти по объекту с оптимальной скоростью, то хотя бы нужно учитывать выше описанное явление, то есть делать поправку на скорость. В 2Д эхолотах есть настройка «скорость прокрутки экрана». Её можно подрегулировать таким образом, чтобы субъективное ощущение движения лодки над дном совпадало со скоростью прокрутки экрана. На эхолотах-сканерах DSI, LSS и HDI настройка скорости прокрутки отсутствует. Не знаю, как это достиг производитель, но на практике создается такое впечатление, что эти эхолоты сами как-то делают поправки на нашу скорость движения и рисуют картинку максимально (насколько это возможно) правдоподобную, несмотря на наши огрехи в управлении лодкой.

Как пользоваться эхолотом?

Практически независимо от модели или марки — действительно просто.
Включаем — катаемся и смотрим — выключаем в конце рыбалки.

По большому счету им не надо пользоваться в привычном понимании этого слова. Скорее подойдет слово использовать. То есть по большому счету он все делает сам, только включите и не забудьте выключить в конце. Просто так и задумано производителем и все настройки по умолчанию с завода установлены на авто-режимах, которые вполне нормально отрабатывают свою функцию. Разве что, возможно, стоит первый раз поднастроить его под свои или новые условия рыбалки, и все. Дальше, возможно, понадобится какая-то незначительная коррекция не чаше чем 1-2 раза в год.

Если вы владеете эхолотом-картплоттером, то правило «Вкл.-Выкл.» тоже работает, но не мешало бы научиться более «продвинутым» приемам. Если привести сравнение, то это все равно что — купив телевизор, все подключили, научились включать и выключать, и смотрим одну программу. Понятно, что желательно хотя бы научиться переключать каналы. Это откроет большие возможности! Другое дело понимать, что он показывает. Об этом пойдет речь ниже.

Но все-таки, даже при такой простоте, несколько важных, элементарных правил нужно соблюсти. Если стоит задача детально и качественно обследовать акваторию на предмет наличия — отсутствия рыбы и изучения рельефа дна то:

  1. Скорость движения лодки должна быть в пределах, не менее 4 и не более 10 км /ч. А наилучшая 5-6 км/ч. Для облегчения визуального понимания — это скорость быстрого человеческого шага. Такая, казалось бы, простая задача может усложниться под влиянием сильного ветра или течения. Двигаясь против значительного ветра или  течения, будет создаваться иллюзия достаточной скорости за счет хорошего шелеста воды об борта лодки. И наоборот, идя по ветру или течению, захочется прибавить газу. Для правильного решения наших задач (качественной, правдивой картинки) скорость 5-6 км/ч должна быть относительно ДНА, а не воды по ощущениям.

    В таких ситуациях, показатель скорости на GPS очень поможет. Это один из важных аргументов в пользу приобретения эхолота — картплоттера. В двух словах девиз такой: «не верь глазам и ушам — верь цифре на экране GPS!» За неимением его, ориентируемся хотя бы относительно берега. Если течения почти нет, то лучше ориентироваться относительно водной поверхности, представляя человеческий шаг.

  2. Старайтесь держать ровный курс лодки. Распространенная ошибка, как профессионалов, так и начинающих — «уход с головой» в экран, не замечая окружающего мира. И как следствие, бесконтрольный курс лодки. И сумбурное понимание того, что под водой. Особенно это правило актуально при использовании эхолотов нового поколения с технологией сканирования. Кому интересно, можно прочитать статью «Вопросы и ответы об эхолотах LOWRANCE Mark-5x DSI и Elite-5 DSI» и там же посмотреть видео.

    По аналогии правильное изучение акватории с помощью эхолота будет похоже на работу комбайна. Ровными проходами в одну — другую сторону, с шагом в ширину луча, без пропусков и топтаний на месте. Если эхолот снабжен GPS, то правильность своих проходов можно отследить на экране по оставшемуся треку (следу) — еще один аргумент в пользу его приобретения. Если картплоттера нет, а просто эхолот – можно посмотреть на кильватерный след. Если что-то появилось на экране — это значит, что оно осталось за кормой пару секунд назад (время излучения и приёма импульса и его обработка приблизительно 1.5-3 секунды) и по следу можно примерно предположить, где конкретно это было. Для совмещенных эхолот-картплоттеров Lowrance последних поколений можно просто навести курсор прямо на эхолоте на найденный объект и встроенный GPS точно вычислит, где он был. И даст возможность сразу поставить путевую точку в этом месте на странице «Карта».

  3. Для эхолотов нового поколения с аббревиатурами DSI, HDI или с блоком StructureScan важно избегать диагонального, «косого» сканирования. Это когда под влиянием сильного бокового ветра или течения лодка идет «как бы юзом». То есть, курс лодки (курсовая линия) не совпадает с реальным направлением движения. Лодка идет немного боком, и картинка в этом случае немного искажается. Поэтому, рекомендация простая — в таких условиях сканируйте или против или по течению или ветру и как можно реже поперек, подставляя борт.

Конечно, для того чтобы с самой современной техникой (особенно HDS с доп. блоком Структурсканер) полностью и быстро разобраться, лучше нанять специалиста, способного провести курс обучения. По моему опыту, полностью обучить пользованию этой техники можно за три часа. Если такой возможности нет — внимательно изучайте статью и пробуйте изложенное применить на практике.

Как его понимать?

Дно

Все понятно — это кривая линия в нижней части экрана, ее изгибы передают соответствующий рельеф. Можно ли по цвету лини дна судить о плотности грунта? Да, но очень грубо. То есть, тонкого перепада плотности от ила до ракушки, пожалуй, заметить не получится. По крайней мере, мне не удается. Но существенное изменение, пожалуй, определить можно. Например, русло реки (чистый песок) — относительно тонкая полоска дна. Заходим в заиленный залив и полоса дна становиться гораздо жирнее. Но должна быть очень значительная разница в плотности грунта, чтобы заметить ее.

Есть одна важная особенность. Бывают места, где количество ила просто запредельное и он очень жидкий на подобии манной каши. Это бывает чаще всего там, где растет много водяного ореха (чалима). Там сигнал эхолота может просто исчезнуть, и это не зависит от марки, типа эхолота или датчика. Просто сигналу не от чего отражаться и он просто «тухнет» в глубоком жидком иле.

Что еще следует учесть? Как я уже говорил, запоздание при прохождении сигнала от датчика до дна и снова к датчику составляет приблизительно 1-2 сек. То есть, цифра глубины это то, что было у Вас за кормой 1-2 секунды назад. Следует учесть, что в момент отображения цифры глубины на экране лодка может уже проехать на полном газу метров 10-20 от того места, где показания были сняты. На свежих моделях Лоуренса, совмещенных GPS с эхолотом, легко можно вычислить местоположение проплывающего по экрану объекта. Просто наводя курсор на интересующий объект на экране эхолота, карплоттер в свою очередь, достаточно точно вычислит его местоположение и позволит поставить точку на экране карты, даже если вы ушли от этого места на приличное расстояние.

Рыба

На классическом эхолоте рыба отображается в виде так называемой дуги.

На классическом эхолоте рыба отображается в виде так называемой дуги

На новых эхолотах с технологией сканирования – в виде кляксы или точки (в зависимости от величины рыбы) разной формы.

На новых эхолотах с технологией сканирования рыба изображается в виде кляксы или точки

Выше были приведены два скриншота экрана эхолота одновременно изображающие одних и тех же рыб разными лучами. Все выше упомянутые эхолоты способны отобразить на экране рыбу величиной «с мизинец».

Как понять какая это рыба? Опыт использования и понимания приходит приблизительно так. Вы нашли что-то с помощью эхолота, предположительно рыбу или корягу, или куст травы. Дальше пытаемся выяснить, что это за рыба, то есть поймать ее или узнать у других рыбаков, что они ловят. Таким образом, если это удается, Вы теперь понимаете, что так изображается такая-то рыба. Если вытащили пучок травы, то понятно, что так изображается именно трава, а не коряга.

Существует ещё режим распознания рыбы и отображения ее символами рыбок — «Fish ID». В принципе считается непрофессиональным почерком включение этого режима. И до недавнего времени считалось, что это маркетинговый ход для того, чтобы начинающие пользователи не задавали сложных для объяснения вопросов: «А где рыба?». Но все-таки технологии совершенствуются, и в некоторых случаях хорошо бы включать эту функцию. Например, при упомянутом случае ловли в отвес мелкой рыбы (ставриды, например) или со льда. Более того, хорошо даже включить звуковой сигнал обнаружения рыбы. В таком простом с точки зрения продвинутых пользователей режиме использования (с символами рыбок и звуковыми сигналами) оказывается, очень удобно рыбачить в отвес на стайную пелагическую (та, что в толще воды) рыбу, не отвлекаясь взглядом на экран. Когда мы слышим звуковой сигнал — рыба под нами. Если сигнал пропал – косяк сместился и нужно его снова поискать.

Есть несколько случаев, когда рыбу невозможно обнаружить ничем. Например, когда почти вся рыба (чаше всего летом)  «гуляет по верхам», то есть, в 1-3 метрах от поверхности. Она просто разбегается в стороны перед лодкой. Думаю, следующим шагом в развитии рыбопоисковых систем может стать поиск, в таких случаях, эхолотом с воздуха с помощью беспилотных летательных аппаратов (БЛА). Подводные лодки, по крайне мере находят уже даже из космоса.

Коряги, водоросли

Метод познания такой же, как в случае с рыбой. Что-то нашли, остановились, забросили снасть — зацеп. Вытащили приманку с кусочком веточки — значит коряга. Обрезали снасть, как будто об нож — значит металл или бетон обросший ракушкой.

Маленькая коряжка 455кГц частотой
Маленькая коряжка 455кГц частотой

Коряжка 200кГц частотой на экране эхолота Марк-5Х
Она же 200кГц частотой на Марк-5Х

Подводным охотникам вообще хорошо. Они просто могут нырнуть и посмотреть что там на самом деле.

Настойки

Первичные настройки, имеется в виду «Русский язык», «метрическая система», вы можете попросить, чтобы настроил продавец или настроить самостоятельно.

Для остальных настроек — рекомендации следующие:
Для начала, чаще всего с завода уже все достаточно нормально настроено. Разве что, можно сделать легкий «тюнинг». В 2Д эхолотах увеличить до максимума «частоту формирования импульса», и чуть увеличить «скорость прокрутки экрана». Остальное, что не понятно, ставить на «Авто» или как установлено с завода.

Для сканеров и DSI уменьшаем контрастность до 40%, выбираем черно-белую палитру для нижнего луча и светло-коричневую — для боковых. Частота в подавляющем большинстве случаев для DSI чаще всего 800-ая, для сканеров LSS – 455-ая. Все остальное – на «Авто».

Еще часто задаваемые вопросы:

Пугает ли эхолот рыбу?

Наверно все зависит от конкретного случая. Какая рыба, на какой глубине, активная — пассивная, в коряге или на открытом дне, на какой лодке рыболов, в каком географическом месте, то есть знакома ли рыба с человеком? То есть, где-нибудь на севере, на диком водоеме, скорее всего импульсы эхолота даже привлекут своей новизной рыбу. И в тоже время, та же самая рыба в похожих условиях, но в густонаселенном рыболовецком районе может весьма настороженно отнестись к звуку, который ассоциируется у нее с недавней перипетией опасной для жизни. Более того, рыбы способны предупреждать друг друга об опасности, связанной, например, с каким-то предметом (лично видел).

Однажды я задал вопрос одному опытному «квочатнику» — пугает ли эхолот сома, когда тот подымается на квок? На что он ответил мне. « Мне все равно пугает или не пугает, просто наблюдать его подход на экране настолько захватывающее и волнующее зрелище, что даже мысль о его выключении не приходит в голову».

И все же выслушивая разные истории и сравнивая свой опыт, скажу, что скорее не пугает и выключать его особо нет смысла, если только не с целью поберечь батарею.

Что будет если «светить» датчиком в сторону от лодки. Можно ли «засечь» рыбу?

Ничего не будет. Эхолот просто перестанет воспринимать пространство, в котором он работает, импульсу не отчего будет отразиться, так как исчезнет дно. То есть для этих целей классический лодочный эхолот точно не подойдет. Хотя попытки постоянно предпринимаются. Существуют модели эхолотов для бокового просмотра, как достаточно бюджетные, так и профессиональные для морского тралового лова. Но хороших отзывов о бюджетных я никогда не слышал, а промышленные — неоправданно дорогие и подходят для применения именно в море для трала.

Источник: lowrance-eholot.ru


Leave a Comment

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.