Как читать эхолот


Большинство рыболовов, не имеющих в силу вполне понятных причин в своем распоряжении столь популярного в последнее время эхолота, считают это новейшее достижение рыболовной техники абсолютным гарантом успеха на рыбалке, мечтательно и с завистью взирая на него сквозь витрину магазина. Однако многие из тех, кто решился выложить за этот аппарат кругленькую сумму, с удивлением вдруг обнаруживают, что приобрели дорогую игрушку, дающую лишь возможность беспомощно разглядывать на дисплее косяки проплывающей «мимо» рыбы.

Сегодня мы поговорим о том, что же на самом деле умеет эхолот и как использовать этот дорогой, но действительно полезный прибор на все сто.

На примере эхолота среднего класса «Ultra III» фирмы Eagle мы рассмотрим базовые возможности современных эхолотов.

Принцип работы эхолота

Прежде чем приступать к ловле с эхолотом, крайне важно уяснить для себя принцип его действия. Дело в том, что эхолот, в отличие, например, от видеокамеры, не выводит на экран подводное пространство все сразу, а шаг за шагом с помощью вертикальных столбцов строит изображение, используя обработанные компьютером результаты ультразвуковых измерений.


Прибор состоит из двух функциональных частей: корпуса с экраном на жидких кристаллах и датчика-излучателя, закрепляемого на транце лодки и соединенного с прибором с помощью кабеля. Датчик непрерывно генерирует высокочастотные сигналы, которые, отразившись ото дна и других водных объектов, возвращаются обратно, неся информацию о подводной обстановке. Сила отражаемого сигнала зависит от свойств объекта (его величины, плотности и т.п.), что позволяет компьютеру прибора различать дно, рыбу, коряги, растительность…

Результаты измерений, полученные с помощью луча, как бы проецируются на ось конуса, в результате чего образуется вертикальный столбец, где системой штрихов показаны сигналы ото дна и обнаруженных в толще воды объектов (рис.1).

Эхолот для рыбалки принцип работы-луч,датчик,экран,изображение,режимы
Рис. 1. Формирование изображения на экране:
а) первый сигнал от датчика появляется в правой части экрана в виде вертикального столбца;
б) когда получен второй сигнал, первый столбец сдвигается на один шаг влево и его место
занимает столбец с результатами последнего замера;
в) через некоторое время весь экран заполняется системой вертикальных столбцов,
формирующих картинку подводного пространства

Это изображение появляется у правого края экрана. После каждого «посыла» луча изображение сдвигается на один шаг влево, а у правого края экрана вновь появляется вертикальный столбец с результатами последнего замера (рис.2).


Эхолот для рыбалки принцип работы-луч,датчик,экран,изображение,режимы
Рис. 2. Механизм формирования вертикального столбца единичного замера:
1 — датчик; 2 — конус луча; 3 — рыбы в «поле зрения»;
4 — рыбы, «затененные» более крупными объектами

Поэтому, даже когда вы стоите на якоре, изображение на дисплее постоянно движется справа налево, так как датчик продолжает ритмично пульсировать. Дно изображается в этом случае в виде прямой горизонтальной линии, так как датчик получает неизменную информацию о глубине водоема. Рыбы, стоящие в конусе луча, также отобразятся в этом случае в виде горизонтальных линий. Поэтому для получения реальной картины рельефа дна вам необходимо перемещаться.

Итак, чтобы правильно считывать информацию с экрана, нужно прежде всего усвоить следующее правило: то изображение, которое только что появилось в правом столбце на дисплее — это и есть результаты последнего замера, то есть вид подводного пространства и дна в данный момент непосредственно под вашей лодкой. А изображение, перемещающееся к левому краю экрана — это уже история, все то, что осталось у вас за кормой. Чем дальше от правого края экрана удаляется изображение, тем дальше за кормой лодки остается соответствующий ему объект, если, конечно, лодка находится в движении.

Определение расстояний до объектов


Датчик посылает волны в виде одного или нескольких конусообразных пучков, наподобие лучей от карманного фонарика, расположенных в плоскости, перпендикулярной направлению движения судна (рис 3).

Эхолот для рыбалки принцип работы-луч,датчик,экран,изображение,режимы
Рис. 3. Положение лучей датчика относительно лодки

 

Частота сигналов настолько высока, что даже при движении на большой скорости под мотором вы будете видеть полноценное изображение без разрывов. Но чем быстрее вы движетесь, тем сильнее изображение спрессовано по горизонтали. Поэтому, перемещаясь с небольшой скоростью, вы дольше будете видеть на экране отдельные элементы подводного мира, а значит, сумеете рассмотреть их более детально. Например, изображение пересекаемой нами подводной возвышенности при движении на большой скорости под мотором занимает лишь часть экрана, а двигаясь на веслах (с меньшей скоростью), мы получим изображение этой же гряды, растянутое по горизонтали на всю ширину экрана.


Эхолот постоянно выдает информацию о глубине и горизонте, на котором обнаружена рыба. Однако определение горизонтального расстояния от вашей лодки до рыбы, коряги, бровки и т.д. иногда становится проблемой. Как быть, если, заметив коряжник или косяк рыбы, вы решили встать на якорь и обловить интересное место? Простейший способ, который, впрочем, широко применяется при промысловом лове на морских рыболовецких судах — это, развернувшись на 180°, пройти перспективный отрезок пути обратным курсом на малой скорости. Как только заинтересовавший вас объект снова появится на вашем экране — бросайте якорь. Если вы движетесь на веслах, можно заякориться, не теряя времени на развороты. Когда лодка, наконец, остановится, интересный участок останется на каком-то расстоянии у вас за кормой. Примерно представляя себе скорость движения лодки, можно определить, куда следует делать заброс.

Объем исследуемого эхолотом подводного пространства зависит от количества включенных лучей датчика и от величины угла (обычно от 16 до 45°) каждого из лучей, в зависимости от модели эхолота. Угол конуса — величина, которую полезно знать для определения диаметра «высвеченного» лучом круга (если лодка статична) или ширины исследуемой эхолотом полосы дна (когда она движется).

Если конус луча имеет угол 20° (как в большинстве эхолотов фирмы Eagle, работающих в двухмерном режиме), то диаметр окружности, образованной лучом на дне, будет равняться 1/3 глубины. Допустим, вы рыбачите с эхолотом Ultra III, включив только центральный луч датчика. Прибор показывает глубину 10 метров, значит, луч «высвечивает» на дне круг диаметром примерно 3,3 метра.


Подобным образом, зная величину угла лучей любого датчика, можно определить диаметр «высвеченного» круга, освежив предварительно школьные знания по геометрии о решении задач с прямоугольными треугольниками.

Нужно заметить, что реальная форма лучей, посылаемых датчиком, лишь примерно напоминает конус, поэтому, производя расчеты, не увлекайтесь количеством знаков после запятой — ширину «читаемой» при движении лодки дорожки можно определить лишь приблизительно.

На водоеме

Многие рыболовы чувствуют себя неуверенно на новых, особенно крупных по площади, водоемах. По внешним признакам можно лишь приблизительно определить особенности подводного рельефа и места скопления рыбы. Поэтому именно при ловле на незнакомых водоемах преимущества эхолота наиболее очевидны.

Непродолжительное предварительное изучение места ловли с эхолотом — и вы уже знаете рельеф и структуру дна, имеете представление о наличии коряжников и подводной растительности, отметили буйками места стоянки рыбы и глубину, на которой она стоит. Однако большинство рыболовов допускает одну и ту же ошибку, изучая рельеф дна незнакомого водоема с помощью эхолота. Перемещение по водоему, напоминающее броуновское движение, дает противоречивую информацию. Прямолинейные проходы позволяют гораздо быстрее разобраться с подводным рельефом. Выбрав неподвижный ориентир (дерево на противоположном берегу), дающий возможность вам двигаться прямолинейно, начинайте измерения от самого берега. После нескольких параллельных проходов вы получите объективную картину рельефа дна неизвестного участка.


Только при движении прямолинейными отрезками вы сможете увидеть на дисплее наглядный классический профиль дна, остающегося у вас за кормой.

Производя измерения, рекомендую для облегчения восприятия поставить эхолот сбоку от себя, развернув экран таким образом, чтобы «картинка» перемещалось в направлении, противоположном движению лодки.

Естественно, тактика прямолинейных промеров подходит в основном для больших по площади водоемов. Работа с эхолотом на реках, а тем более — по лункам на зимней рыбалке имеет свои нюансы, главный из которых — необходимость четко представлять себе, в какой плоскости датчик посылает лучи и какие именно из них «задействованы». Но это уже тема будущего разговора, а тем, кто ловит с эхолотом с лодки в озерах и водохранилищах, рекомендую серьезно отнестись к расположению датчика на транце. Непринужденно опущенный за борт прямо на соединительном кабеле датчик — демонстрация полной неосведомленности о механизме работы прибора, требующего четкой ориентации излучателя относительно поверхности воды и киля лодки.

Двумерный режим работы эхолота


Это наиболее популярный режим работы эхолотов, который действительно выполняет много полезных функций, невозможных в трехмерном режиме. Помимо двухмерного профиля рельефа дна, прибор дает информацию о твердости подводных объектов (функция «серая линия») и позволяет отключать режим идентификации рыбы.

Главное преимущество двухмерного режима — возможность более подробного, чем в трехмерном режиме, изучения подводного мира. При этом большинство двухмерных эхолотов с трехлучевыми датчиками широкого обзора (Broad-way) принципиально ни в чем не уступают трехмерным эхолотам, так как одновременно могут показывать на экране рыбу, находящуюся под лодкой (в вертикальном луче), и рыбу слева и справа от лодки (соответственно в левом и правом лучах). Символ рыбы из левого луча сопровождается индексом L, символ рыбы из правого луча — индексом R.

Кстати, рискуя несколько разочаровать потенциальных покупателей эхолотов, должен заметить, что пока этот прибор, к сожалению, не умеет различать виды рыб. Просто в зависимости от силы сигнала (от большой рыбы сигнал сильнее) эхолот выдает на экран один из четырех разно размерных символов.

Тем не менее по косвенным признакам можно с определенной долей достоверности предположить, что за рыба изображена на экране. Крупный символ около коряги — скорее всего щука или судак, несколько крупных символов в средних слоях воды — наверное, стая леща. Рыбача на реке Ахтубе в одной из глубоких ям, мы видели символы очень крупной рыбы, и ни у кого не возникло сомнений, что это сомы. Впрочем, как вы догадались, в этой методике многое зависит от воображения рыболова.


Несмотря на внешнюю привлекательность и наглядность режима Fish ID (идентификация рыбы), изображающего ее в виде соответствующих символов разного размера, настоятельно рекомендую, работая в двухмерном режиме, отключать почаще эту функцию. Как объяснили мне во ВНИИ морского рыбного хозяйства и океанографии, компьютер прибора — умная машина, но и он иногда обманывается. Часто он принимает за рыбу проплывающие под водой ветки, растения, даже просто пузырьки воздуха, вводя в заблуждение рыболова.

С другой стороны, все, что компьютер идентифицирует как «не рыба», автоматически убирается с экрана, а эта информация может оказаться весьма важной, например, лежащий на дне рекордный экземпляр.

Несколько раз мне приходилось слышать от владельцев эхолотов: «Подвожу ему под датчик здоровую рыбу на кукане, а он, собака, не видит». На самом деле при включенной функции Fish ID компьютер не идентифицирует этот слишком сильный сигнал вблизи датчика как рыбу, просто-напросто выбрасывая ее. А вот отключив этот режим, вы быстро убедитесь, что прибор далеко не так «слеп», как кажется.

Современные двухмерные эхолоты с высокой разрешающей способностью при отключенном режиме Fish ID способны обнаружить на дне… мормышку вашей удочки.


Если отключить режим Fish ID, то рыба, в отличие от других объектов, видна на дисплее в виде полумесяца, «рогами» вниз, причем дуга месяца тем круче, чем выше скорость лодки.

Формирование столь «странного» изображения имеет простое объяснение. При движении лодки рыба сначала попадает на периферию луча, где мощность сигнала существенно ниже, чем вдоль центральной линии. Поэтому отраженный от рыбы сигнал слабый, и в правом столбце экрана появляется чуть заметный темный штрих даже при наличии крупной рыбы. По мере приближения рыбы к центральной линии луча мощность сигнала возрастает в несколько раз, при этом в правом столбце толщина штриха соответственно увеличивается.

Кроме того, рыба приближается к датчику, что воспринимается эхолотом как уменьшение глубины, на которой расположен объект, т. е. штрих в правом столбце становится толще и заметно поднимается.

При дальнейшем движении лодки рыба, пройдя центральную линию луча, выходит из него. Происходит обратный процесс: штрих — изображение рыбы — становится все тоньше, снова загибаясь книзу (рис. 4).

Эхолот для рыбалки принцип работы-луч,датчик,экран,изображение,режимы
Рис. 4. Так эхолот видит рыбу:
а) рыба «входит» в конус, ее изображение появляется на экране;
б) в центре конуса рыба находится на минимальном удалении от датчика,
поэтому штрих изображения поднимается вверх;
в) рыба «выходит» из конуса, удаляясь от датчика — щтрих изображения
уходит вниз; в результате формируется полумесяц


Изображение рыбы не всегда выглядит как классический полумесяц: иногда видны только «рога», если рыба проходит не через центр луча, а лишь «зацепив» его край.

Другая причина появления полумесяца неправильной формы — изменение направления и скорости движения рыбы в конусе. И все же характерные полумесяцы от рыб трудно перепутать с другими подводными объектами, особенно в режиме увеличенного изображения.

Для рыболова особый интерес в двухмерном режиме работы эхолота представляет функция «серая линия» (Grey Line), наличие которой является не последним аргументом при выборе той или иной модели эхолота.

Разные по плотности подводные объекты отображаются на экране разными оттенками: более плотные лучше отражают сигнал и показаны серым, менее плотные — черным. Grey Line позволяет различать на дне валуны, коряги, растительность, например, лежащий на дне объект, имеющий серую «сердцевину» — валун, полностью темный — скорее всего, донные растения.

Но, пожалуй, наибольшее практическое значение этой функции — возможность определить характер дна водоема: чем шире серая линия, тем тверже дно, и наоборот. Опытным рыболовам не нужно объяснять, что участки, где твердое (например, песчаное или каменистое) дно граничит с мягким (илистым или глинистым) — весьма перспективные места для ужения.

Трехмерный режим эхолота

Не обладая такими полезными функциями, как «серая линия» и отключение режима Fish ID, трехмерный режим зато дает весьма наглядное объемное изображение подводного рельефа достаточно широкой полосы дна за вашей лодкой. В этом режиме каждый из лучей датчика строит свой двухмерный профиль. Точки, равноудаленные от датчика, соединяются между собой через определенные промежутки поперечными линиями, образуя своеобразную сетку, которая и создает ощущение объема.

Эхолот для рыбалки принцип работы-луч,датчик,экран,изображение,режимы

Трехмерный режим выглядит очень привлекательно, но за наглядность приходится расплачиваться существенным снижением подробности изображения. При одновременной работе четырех или даже шести лучей датчика трехмерного эхолота компьютер не в состоянии «обсчитать» информацию столь же подробно, как при работе одного луча. Именно поэтому символов определяемой им рыбы гораздо меньше, чем в двухмерном режиме, да и контуры дна переданы весьма приблизительно.

Американские рыболовные изобретения всегда настороженно воспринимались европейцами. Так было с мягкими приманками — твистерами, так случилось и с эхолотом. Но если твистеры здесь недооценили, с эхолотом все было наоборот. Несмотря на то, что в США эхолот является базовым элементом оснащения любого рыболовного катера, в Европе он был поначалу запрещен под давлением экологических организаций большинства стран из опасения, что это устройство позволит в мгновение ока выловить всю рыбу в не столь обширных, как, например, Великие озера, западноевропейских водоемах. Однако очень скоро стало ясно, что эхолот не ловит рыбу. Это лишь прибор для определения рыбьих стоянок и подводного рельефа. Применение эхолотов было легализовано, и в настоящий момент осталось всего несколько стран (например. Франция), где использование эхолотов запрещено, да и те находятся на грани принятия разрешительного закона.

Заканчивая разговор об этом полезном и весьма желательном в арсенале любого удильщика приборе, хочу напомнить, что успех в конечном счете зависит от ваших навыков, применяемых снастей и, главное, «желания» рыбы попасть на крючок.

Не пытайтесь, глядя на экран эхолота, попасть рыбе блесной точно по голове, а разбирайтесь с подводным рельефом и характером дна, с горизонтом, в котором стоит рыба, и тогда удача обязательно будет с вами!

Источник: www.prospinning.ru

Что собой представляет эхолот для рыбалки

1. Как это работает

Эхолоты, они же сонары, разработаны примерно в сороковых годах прошлого столетия для обнаружения подлодок.

Первые сонары для спортивного рыболовства появились в 1957г. Основными узлами прибора являются:

  1. Передающее устройство – генерирует сигнал как электрические импульсы и подает его на датчик.
  2. Датчик – преобразует полученный сигнал в звуковые излучения.
  3. Приемник возвратного сигнала – улавливает отраженный от подводных предметов сигнал, в соответствии с задержкой времени возврата звуковой волны определяется расстояние до точки отражения и, таким образом, формируется картинка рельефа дна и места нахождения перемещающихся объектов (рыбы). Излучение безвредно и не ощущается живыми существами.
  4. Дисплей – отражает картинку невидимого под водой пространства в режиме реального времени.

2. Доступные операции и характеристики

  1. Чувствительность. Функция руководит способностью изделия к приему сигналов. При необходимости рассмотреть подробности нужно плавно повышать уровень чувствительности до достижения нужного результата. Когда экран показывает большое количество помех, нужно понизить чувствительность до получения четких отражений «дужек рыб», если таковая там присутствует. Величину чувствительности можно изменять как на ручном управлении, так и при включенной автоматике этой функции. Методики подстройки на обоих режимах идентичны, а итоговые эффекты различны. Авторежим позволит нарастить чувствительность до предела, а вот снизить ее удастся только до уровня, когда различается рельеф дна. На ручном режиме можно настроить прибор до экстремальных значений в обе стороны, различать рельеф дна можно примерно от уровня 50% чувствительности.
  2. ASP – функция представляет собой устройство, позволяющее фильтровать помехи различного происхождения. Оно постоянно анализирует скоростной режим плавсредства, световые интерференционные эффекты, и на автомате фильтрует сигналы различного характера, устраняя помехи. В терминах сонаров любые посторонние эффекты называются «шум». Шумы могут иметь самое различное происхождения, например звук работающего двигателя, работу устройства зажигания. ASP имеет четыре настройки режимов работы: OFF – выключено, LOW – для низкого уровня, MEDIUM – для помех среднего уровня, HIGH – для высокого. При наличии сильных помех лучше использовать режим HIGH, однако наиболее эффективно – найти место происхождения помех и устранить причину их возникновения.
  3. ALARM – сигналы предупреждения. В конструкции заложены три вида таких сигналов: «Рыба» – FICH ALARM, срабатывает, когда приемник определяет совокупность сигналов как рыбу, следующий сигнал (ZONE ALARM) раздается во время перемещения в это место, и сигнал, предупреждающий о глубине, реагируя на приближении к отмели (Shallow), а также указывает глубину в месте расположения. Предупреждение срабатывает только от прибора наблюдения за дном водоема.
  4. CHART SPEED – настройка скорости, с которой происходит обновление отображения на мониторе. Изначально этот показатель настраивается на максимальное значение. Во время стоянки лодки или при медленном дрейфе можно поменять установку на 50%, это действие позволяет улучшить качество изображения. При стабильном расположении на максимальных настройках проплывающие мимо рыбы будут обозначаться длинными горизонтальными линиями, при уменьшении скорости прокрутки эти линии станут короче.
  5. DEPT CURSOR – курсор, указывающий глубину. Показан на дисплее черточкой с цифрами в окошке. При перемещении его можно получить данные о глубине расположения предмета.
  6. FICH ID – идентификатор рыбы, компьютер рассматривает определенную совокупность отражений как рыбу. При этом он различает размер рыбы как мелкую, среднюю или крупную. Соответственно на экране появляется символическое изображение рыбки соответствующего размера. Нужно отметить, что в качестве рыбы бывает интерпретирована совокупность сигналов от любых плавающих предметов (ветки, водная растительность, водяные пузыри). Там, где сонар «обнаруживает» рыбу, ее может не быть и наоборот. Здесь может помочь только опыт рыболова и понимания основных законов подводного мира. А эхолот является лишь помощником на рыбалке.
  7. FichReveal – режим выделяет из всех сигналов только определяющий рыб, используя при этом «серую шкалу». Это означает то, что сигналы послабее обозначаются белым цветом, а сильные – черным. В градации порядка десятка серых оттенков. При настройке прибора настоятельно рекомендуется отключение автоматики и настройки чувствительности до максимума.
  8. GREENLINE – «серая полоса». Эта настройка позволяет отличать слабые сигналы от более интенсивных. Таким образом, можно отличить каменистое дно от илистого, которое дает размытый нечеткий абрис профиля дна, твердое дно выглядит как четкая широкая линия.

Разновидности эхолотов по лучевым показателям

Однолучевые. Сонары, которые излучают один поисковый луч. Работают до глубины 30 – 32 метра, угол расширения луча составляет в большинстве моделей 24о. Некоторые модели комплектуются излучателями до 90о.

Эхолот

Двухлучевые. Эти эхолоты имеют угол охвата порядка 60о от оси первого (узкого) луча. Рыба, попадающая в зону действия узкого луча, высвечивается на экране светлыми значками, а находящаяся во втором луче – темными. Глубина обследования может составлять до 70 метров.

Эхолот

GARMIN STRIKER PLUS 5CV (выбор редакции)

Garmin Striker Plus 5CV

  • Размер дисплея: 5´´
  • Разрешение экрана: 800 х 480 пикселей
  • Тип дисплея: WVGA цветной
  • Водонепроницаемость: да (IPX7)
  • Технология сонара CHIRP: да (встроенная)
  • DownVü: да, с CHIRP (встроенный)
  • Мощность излучения: 500 Вт (среднеквадр.)
  • Размеры: 18.8 х 11.6 х 5.4 см
  • Вес: 0.5 кг
  • Комплектация: эхолот, кабель питания, поворотное крепление, аппаратные средства, наклейка на бампер Garmin
Как читать эхолот Как читать эхолот Как читать эхолот
Quickdraw Contours. Встроенное картографическое программное обеспечение позволяет создавать и хранить карты с контуром в 1 фут на площади до 2 миллионов акров. GPS Fishfinder. Встроенный высокочувствительный GPS-приемник находит и поддерживает ваше местоположение, позволяет отмечать путевые точки для разных мест. Garmin CHIRP. Позволяет получить почти фотографическое, широкое изображения того, что проходит под лодкой, поэтому подводные объекты и рыба хорошо различимы.

Цена без скидки: 7860 руб.

Ссылка на официальный сайт. Иногда проходят акции с весомыми скидками.

Многолучевые. Приборы могут иметь угол охвата до 90о. Средний луч дает четкую картину дна водоема на глубине до 35 метров, а другие лучи показывают картинку по ходу движения лодки и за ее кормой. Четко отображается наличие рыбы по левому и правому бортам судна в движении.

Эхолот

Эхолоты 3D. Это семейство сонаров, оснащенных шестью излучателями и способные давать объемное изображение рыб и рельефа дна на специальном экране путем определяя расстояния до объектов. Применяемая шестилучевая система сканирования уникальна.

Эхолот

Эхолоты, смотрящие вперед. Эти приборы оснащены боковым излучателем, отслеживающим обстановку по ходу движения судна. Обзор увеличивается до угла 180о, эффективно обнаруживая мели и другие препятствия на пути.

Эхолот

Беспроводные сонары. Излучатель прикрепляется к леске и забрасывается в нужное место. Связь с дисплеем осуществляется по беспроводному принципу. Работает на удалении до 320 метров.

Эхолот

Варианты использования сонаров

Для успешной рыбалки очень важно иметь представление о характере профиля дна. Известно, что рыба кормится на скатах, уклонах. Влияние оказывает угол подхода течения к неровностям дна. Пищевые субстраты, следуя за течением, оседают в более спокойной воде за увалом, и рыба это знает, не мешает знать и рыбаку. А поможет найти «клеевое место» именно эхолот.

1. Применение сонаров при ловле с берега

Здесь нам пригодиться эхолот с беспроводной связью, который можно забросить на расстояние при помощи обыкновенного удилища.

Осмотрев топографию дна при помощи сонара и определив теоретически перспективные места, можно приступать к рыбалке:

  1. Вносим на место ловли прикормку. Ее назначение – создать пищевой след, по которому рыба придет к этому месту. Нужно помнить главное – назначение прикормки не кормить рыбу, а привлекать ее к месту лова.
  2. Эхолот поможет определить, в какой форме ее вносить, если перед нами крутой уклон, то вносить прикормку нужно «блинами», а не круглыми комками, что более привычно.
  3. Контролируем действенность прикормки – через небольшое время она должна здесь появиться и, если все остальное было сделано правильно, скоро это проявится в активном клеве.

Нужно только заметить, что эхолот – не панацея, он поможет правильно сориентироваться, но не обеспечит успех рыбалки. Слишком много в этом деле других факторов, влияющих на конечный результат.

2. Применение сонаров при ловле с лодки

Прежде всего, следует заметить несомненную пользу эхолота при перемещении по водоему, особенно по незнакомому. Он дает возможность не только изучить топографию дна для выбора перспективного места ловли, но и предупредит о возникновении препятствий для передвижения.

Одной из основных проблем при использовании эхолота с лодки – найти правильное место его установки, чтобы работе сонара не препятствовали кавитационные потоки пузырьков воздуха. Поэтому для начала предпочтительно соорудить временное крепление и путем проб и ошибок найти для него наилучшее место на борту судна.

Обычное место крепления – транец. В остальном же применение сонара на рыбалке преследует те же цели и задачи, что и при ловле с берега.

Как настроить эхолот

Уже только задумавшись о приобретении прибора, будущий пользователь задается вопросом о том, как его настроить для максимально эффективной работы. Продавец–консультант даст ожидаемый ответ – прибор настроен в оптимальном режиме и дополнительных настроек не требуется.

Вместе с тем:

  1. При первом включении устанавливаются оптимальные настройки функций определения рельефа дна и поиска рыбы. Нужно обратить внимание, что значения выражаются в футах, и включается функция определения вида обнаруженных рыб.
  2. Для внесения изменений в настройки нужно зайти в меню прибора и произвести необходимые поправки. Помните, что внесенные поправки сохраняются при выключении прибора, значит, при следующем включении они возобновятся в том виде, в котором были внесены. Для начинающих пользователей наиболее понятен режим идентификации, опытные предпочитают изменять его, поскольку этот режим может быть недостаточно информативным.
  3. Наиболее частым изменениям обычно подвергается настройка изображения с целью узнать максимальные возможности прибора. Для достижения результата можно попробовать включение многоэкранного режима, либо нарастить просмотр изображений, «поиграть» в обе стороны с настройкой чувствительности или поменять диапазон глубин. Чем шире диапазон, тем более четкие изображения рельефа дна будут получены на экране.
  4. При понижении чувствительности изменяется ширина луча, ищущего рыбу. Для обнаружения рыбных мест можно уменьшить диапазон и он будет более точно их определять. Главное не перестараться, иначе прибор не увидит не только мелкую рыбу, но среднюю.
  5. Опытный рыболов применяет более «навороченные» варианты сонаров с расширенными возможностями настроек. Простого изменения чувствительности недостаточно, нужно иметь возможность регулировки ищущего луча и соответственно подстраивать диаграмму стандартного датчика.
  6. Главное, перед началом применения внимательно ознакомиться с инструкцией по эксплуатации и правильно настроить эхолот, учитывая его конструктивные особенности.

Как разобрать данные на дисплее эхолота

Принцип действия сонара уже был рассмотрен выше, и он заключается в оценке времени прохождения звукового луча до препятствия и времени возврата отраженного луча к приемнику. Таким образом, компьютер прибора создает на дисплее профиль дна, определяет плотность грунта (твердый или илистые отложения), различает движущиеся в толще воды предметы и, в соответствии с заложенной в него программе, определяет их принадлежность, а сложные приборы определяют даже вид рыб и показывает их условное изображение.

На вертикальном столбце в левой части экрана отображаются глубины расположения подводных объектов. В некоторых приборах эту информацию можно получить нажатием на соответствующий курсор, более совершенные показывают данные в окошечке курсора постоянно.

Эхолоты для зимней рыблки

Эти приборы имеют ряд особенностей, связанных с условиями эксплуатации. Для таких изделий применяются специальные теплосберегающие корпуса. Для обеспечения питания на морозе применяются более емкие аккумуляторы, часто не встроенные, а выносные в соответственно утепленной упаковке.

Это позволяет использовать эхолоты в течение довольно длительного времени при температуре от -15оС и ниже. Никаких особенностей в считывании информации с дисплея не существует. Кстати, на зимних сонарах не применяются жидкокристаллические экраны и используются специальные датчики.

Несколько советов и рекомендаций

  1. Эхолот способен превратить рыбалку в праздник, сделав ее азартной, увлекательной и результативной. Но нужно понять, что этот прибор не является волшебной палочкой. Нужно непременно знать повадки рыб, типичные места их обитания, предпочтения в питании. Тогда сонар станет неоценимым помощником.
  2. Необходимо помнить, что эхолот показывает не текущую картинку, а ту, что была несколько мгновений назад и в соответствии с этим согласовывать свои действия.

Источник: poklevok.net

Если цену и технические навороты эхолота оставить в стороне, то механизм работы данного устройства выглядит так. Сначала формируется электрический импульс в блоке управления, далее импульс передается на датчик. Затем происходит преобразование электрического импульса в ультразвуковую волну, угол направления которой перпендикулярен поверхности воды. Волна проходит сквозь воду, достигает дна, отражается от него и возвращается назад. В конечном итоге ультразвуковая волна преобразуется назад в электрический импульс и обрабатывается блоком управления. Если на пути волны до дна встретились какие либо препятствия (рыбы, водоросли и т.п.) то информация о них также будет включена в итоговый сигнал, который получит датчик. После обработки сигнала блоком информация выводиться на экран справа в виде столбца. Последовательность таких сигналов и формирует изображение, которое перемещается по экрану справа налево.

Важным моментом в работе любого эхолота является скорость перемещения лодки, при которой он будет корректно отображать  ситуацию под водой. Излучатель эхолота не отправит следующий импульс, пока не будет получен предыдущий.

eholokaciya_01

Если учесть то, что в наших краях в основном небольшие глубины, где используются бытовые эхолоты, важным фактором становится скорость обработки сигналов процессором эхолота. Модели современных эхолотов работают на скоростях от 10 до 80 км/ч. Если хотите окунуться в расчеты то вот вам данные. Звуковая волна в воде распространяется со скоростью 1500 м/с. Скорость перемещения в лодке и глубину подставляете и получаете нужную цифру. Кроме быстродействия эхолота обязательно нужно смотреть на его дисплей, точнее на разрешение. Высокое разрешение по вертикали позволяет отображать мелкие объекты и поэтому 160 пикселей (или точек) уже вполне хорошее, а если 300 или 320 то такого точно будет достаточно. Разрешение по горизонтали это по сути история сканирования. Если вы используете эхолот на малых скоростях, то вам будет вполне достаточно и 160 пикселей, для больших скоростей лучше купить эхолот с разрешением по горизонтали 320.

Датчики и углы обзора эхолота

Эхолоты могут быть 1, 2, 3, 4 и 6 лучевые. Также бывают и 3D эхолоты (к примеру эхолоты Humminbird). Количество лучей зависит от типа датчика. Основа любого датчика эхолота это искусственный кристалл циркона свинца или титаната бария. Размер и геометрическая форма кристалла и определяют на каких частотах и со сколькими лучами будет работать датчик. Кроме количества лучей обязательно обратите внимание на пиковую и среднюю (RMS) мощность, частоту работы датчика и угол обзора. От части по пиковой мощности можно узнать максимальную глубину эхолокации. Польза от знания средней мощности так же есть. Чем меньше отношение пиковой и средней мощности тем на более больших скоростях сможет работать эхолот.

Современные эхолоты чаще всего используют частоты 50 и 200 кГц. Частота 50 кГц перекочевала в обычные эхолоты от морских судов. У этой частоты большой угол охвата и большая глубина сканирования, но низкое разрешение и плохое определение малых объектов, а также большая чувствительность к помехам. Датчики с 200 кГц предназначены для малых глубин и больших скоростей, они хорошо определяют мелкие объекты и не так чувствительны к помехам, но у них маленькая глубина сканирования и узкий угол охвата (обзора).

В теории звуковая волна, запущенная датчиком, распространяется в воде во все стороны, но ее распространение не является равномерным, т.к. датчик у нас узконаправленный. Мощность сигнала по центральной оси максимальна, чем дальше от этой оси, тем меньше его мощность и совсем на краях сигнал уже невозможно отличить от  помех. Угол охвата принято измерять по уровню -10 дБ, т.е. на периферии мощность сигнала в 10 раз меньше чем на центральной оси. Но не стоит думать, что чем больше угол охвата, тем лучше в любом случае. К примеру глубину эхолот определяет по самой высокой точке дна, которая попала в конус луча. И если у 200 кГц датчика с углом 20 градусов на глубине в 10 метров пятно луча будет диаметром 3,5 метра, а у 60-ти градусного 83 кГц пятно будет уже 11,5 метров. Так вот первый может пропустить яму шириной не более 3,5 метров, а второй уже 11,5 метра. Разница ощутима, не правда ли? Небольшой угол охвата у датчика даст более точную картину дна.

eholokaciya_02

Сегодня эхолоты все чаще используются не для сканирования дна, а для поиска рыбы, они так и называются – рыбопоисковые эхолоты (рекомендуем посмотреть эхолоты Lowrance). И для этих целей чаще всего используют двухлучевые датчики. К примеру датчик с частотой 200 кГц и углом 20 гр. сканирует дно, а 83 кГц и 60 гр. занимается поиском рыбы. Центральная ось у обоих лучей одна. На экране рыбы опознанные разными датчика обозначаются по разному. Опознанные узким лучом символы закрашиваются темным, а широким символы прозрачные. Но двухлучевой эхолот не может точно определить положение рыбы, слева она или справа от лодки. С этим справится уже трехлучевой эхолот. Кроме глубины, на котором определилась рыба будет обозначение L или R.

eholokaciya_03

Для более точного определения местоположения рыбы используются четырехлучевые эхолоты. Они отлично подойдут для троллинга (ловли на дорожку). Но в таком эхолоте лучи находятся не на одной оси. Два луча работают как и у двух лучевых эхолотов, а вот два других сканируют под небольшим углом к центральной оси. Частота боковых датчиков обычно 455 гКц, угол 45 градусов. Экран таких эхолотов разделен на три части. В верхней показывается стандартная информация от двухлучевого датчика, а внизу слева и справа данные от высокочастотных боковых датчиков.

eholokaciya_04

Самую полную информацию даст шестилучевой эхолот или 3D эхолот. У него датчик с шестью независимыми излучателями, угол охвата у каждого 16 градусов. Соседние лучи перекрывают друг друга и итоговый угол равен 53 градусов. Такой эхолот максимально точно показывает рельеф дна и расположение рыбы. На экране отрисовывается трехмерная картинка.

Что отображает эхолот на экране

Эхолот это ни в коем случае не телевизор, хотя что то похожее в них есть. Эхолот работает только в движении (смотрим теорию чуть выше). Если лодка стоит на месте и соответственно датчик неподвижен, то на экране вы увидите прямую линию, т.к. сигнал все время будет один и тот же.

eholokaciya_05

Здесь вы видите экран эхолота Humminbird Matrix12.  Практически все эхолоты умеют измерять глубину и эти данные они выводят на экран (45 ft-футов). Также у большинства есть встроенный термосенсор в датчик. Температура измеряется в поверхностном слое (56 F по фаренгейту). Если если еще и GPS датчик, то еще вы увидите и скорость своего перемещения (3,1 mph – мили в час). Напряжение питания выводиться внизу по центру (14.0 V). В правом нижнем углу диапазон глубины (60), он выбирается автоматически или вручную. Числа над символами рыб – это на какой глубине они были обнаружены.

Рельеф дна отрисует достаточно точно любой современный эхолот, а вот структуру дна нет. В этом случае все зависит от экрана и мощности эхолота. Для наших глубин большинству эхолотов вполне хватает мощности, а вот с качеством экрана могут быть проблемы. Для более менее нормального отображения структуры дна будет достаточным разрешение в 240 пикселей по вертикали и 4-х оттенках серого. Самым лучшим будет эхолот с цветным экраном. Цветные эхолоты разные структуры дна окрашивают в разные цвета. Но и у ч/б эхолотов есть методы отображения структуры дна.

  • White Line – Белой линией на поверхности выделяются самые сильные сигналы, отделяя тем самым придонные структуры от твердого дна.

eholokaciya_11

  • Structure ID – Темным отрисовываются сильные отраженные сигналы, слабые светлым оттенком.

eholokaciya_12

  • Inverse – Сильные сигналы наоборот показаны светлым. Помогает определить именно слабые сигналы.

eholokaciya_13

  • Black – Отображает твердое дно без придонные структур. Используется для точного определения рельефа дна.

eholokaciya_14

Для точного определения придонных структур, в которых может прятаться рыба (а это каряги, растительность, топляки) необходим уже экран с 300 пикселями по вертикали и 10 оттенками серого. Хорошо если эхолот может определять термоклин (граница водных слове с разной температурой). Термоклин может помочь в поиске рыбы.

Рыба на экране эхолота может отображаться или дугами или символами. Системы идентификации рыб совершенствуются с каждым годом и в основе их лежит главный принцип: у каждой рыбы есть воздушный пузырь, он дает очень сильный отраженный сигнал и по уровню этого сигнала можно достаточно точно определить размер рыбы. Но это только принцип, по факту каждый производитель использует массу параметров для определения типа и размера рыбы. Рыба отображается тремя символами обычно: большая, средняя, мелкая.

Дополнительные функции эхолотов

Эхолот в современном представлении это уже не просто прибор для определения глубины. Сейчас он с легкостью определяет структуру дна, придонную структуру, размеры и типы рыб, температуру воды.

eholokaciya_06

Кроме всего этого эхолоты могут оснащаться дополнительным датчиком бокового обзора. Он показывает данные в стороне от текущего курса судна. Дополнительный беспроводной датчик Смарт Каст показывает рельеф дна и рыбу на расстоянии до 30 метров от стоящей лодки. Он также может использоваться при ловле с берега, т.к. не требует постоянного движения. Дополнительный датчик скорости показывает вашу текущую скорость и измеряет пройденное расстояние. Барометрический датчик – показывает данные о давлении воздух, по которым косвенно можно судить о погоде и прогнозировать ее изменения. GPS навигатор и картплоттер показывают ваше текущее местоположение на подробных картах местности, позволяют сохранять координаты с данными о глубине, траектории вашего движения.

Источник: spyship.ru


Leave a Comment

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.